Мы знаем, как выглядят атомы — электроны, движущиеся вокруг ядра. Но можно ли прощупать это, потрогать атом? И если они пустые, почему не проваливаются сквозь друг друга?
Подпишитесь на AdMe: goo.gl/DgUonf
— Земля — это единственная планета в нашей Солнечной системе, Галактике и потенциально во всей Вселенной, на которой поддерживается жизнь. Мы, люди, верим, что практически неистребимы, но оказывается, что есть уникальное создание — еще более живучее, чем мы, которое просто невозможно убить. Встречайте тихоходку — одно из самых стойких существ в мире, а может, и во Вселенной.
Тайм-коды:
Их еще называют водяными медведями. 1:18
Они очень маленькие. 2:20
Они очень-очень старые. 3:08
Они могут жить где угодно. 4:02
Они (в основном) безобидны. 5:00
Их практически невозможно убить. 6:04
Они выживают в случаях массового вымирания. 10:45
Они могли бы выжить на другой планете. 12:33
Содержание:
— Тихоходку обычно называют водяным медведем, потому что она чаще всего встречается в воде, где предпочитает обитать, а еще из-за медленной походки, которая напоминает медвежью.
— Самая большая взрослая тихоходка длиной примерно 0,5 мм или 1/20 см, что меньше блохи и личинки клеща.
— Самые ранние имеющиеся у нас окаменелости вида тихоходок датируются кембрийским периодом — около 530 миллионов лет назад.
— Тихоходок обнаруживали на высотных пиках Гималаев, в глубоких океанских впадинах, грязевых вулканах и тропических лесах.
— Эти уникальные создания попадают в новую среду и помогают установить экосистему, как золотоискатели, обосновавшиеся на границе.
— Многие тихоходки могут впадать в обезвоженное состояние, чтобы выжить в практически любой опасной внешней среде. Они сворачиваются клубком, их тела становятся похожими на стекло, и они вводят себя в стазис, во время которого практически неуязвимы.
— Тихоходки пережили все возможные периоды массового вымирания — от ордовикско-силурийского 440 миллионов лет назад вплоть до событий, которые уничтожили динозавров.
— Условия на Марсе находятся в пределах возможностей выживания тихоходок, если предположить, что там есть достаточно воды для поддержания их жизни.
— Мы в социальных сетях:
Сайт: homo-science.ru
Музыка из видео: vk.com/audios-22629421
Внимание! Опыты в данном видео могут быть опасны, не пытайтесь их повторить!
В этом видео я расскажу вам о том как можно получить электричество из урановой рюмки.
— Реклама и другие коммерческие предложения: vk.com/mthoisoi
— Кто хочет стать партнером ютуба — всем сюда: youpartnerwsp.com/join?442
Приветствую вас на своем канале, посвященному опытам по неорганической и органической химии! Здесь вы сможете найти множество химических опытов, в каждом из которых присутствуют объяснения, которые будут понятны даже самым далеким от химии людям. В своих видео опытах я также указываю формулы, которые помогут вам понять суть химических реакций и превращений. Если у вас в школе были проблемы в восприятии трудных химических реакций и формул, то некоторые из моих видео вы сможете использовать в качестве самоучителя по химии. Также, некоторые опыты из моих видео можно будет повторить дома, конечно же, с соблюдением всех правил безопасности. Многие из опытов, которые приведены в моих видео, показывают детям и используют в качестве классических демонстрационных опытов для школьников или студентов. Каждый опыт максимально понятно объяснит вам происходящее, химия теперь доступна для всех, включая настоящих чайников!
#Thoisoi #Химия #Открытия #Уран
Согласно общей теории относительности Эйнштейна, гравитация — это искривление пространства-времени. Время может иметь кривизну, более того, силы притяжения не существует! Это иллюзия!
Как работает теория, которая предсказала черные дыры, гравитационные волны и обеспечивает работу GPS и ГЛОНАСС — в выпуске!
Содержание
00:00 Эксперимент Хафеле-Китинга
00:54 Что замедляет время?
01:27 Введение
02:19 Что именно замедляется?
02:51 Наш мир — четырехмерный!
04:13 Пространство-время — НЕ ПРЯМОЕ!
05:13 Интеграция
06:27 Почему аналогии не верны?
07:29 Артур Шарифов
08:57 Мир — рулон туалетной бумаги!
09:40 Как искривляется пространство-время?
11:32 Что такое гравитация?
13:40 Река времени
14:10 Силы тяжести не существует!
15:26 Заключение
Сегодня я покажу вам распаковку профессионального микроскопа Levenhuk 870T что стоит 1000 долларов,
и продемонстрирую удивительный мир микроорганизмов найденных в озере большого города.
Вы думаете что Первый Искусственный Спутник Земли передавал сигналы из космоса с помощью лампового передатчика? И что Советская микроэлектроника была самой Большой электроникой в мире? Вы глубоко заблуждаетесь!
То что самые малые модули и микросхемы были созданы на западе и в Японии — это миф!
И Гибридные Микро Схемы тому живое доказательство!
Первая в мире гибридная интегральная схема «Квант» (позже получившая обозначение «ГИС серии 116») была разработана в 1962 году в ленинградском НИИ Радиоэлектроники (НИИРЭ, позже НПО «Ленинец»), главный конструктор — А. Н. Пелипченко. Она же была первой в мире ГИС с двухуровневой интеграцией — в качестве активных элементов в ней использованы не дискретные бескорпусные транзисторы, а третья в мире полупроводниковая ИС «Р12-2», разработанная и изготовленная в том же 1962 году по заказу НИИРЭ Рижским заводом полупроводниковых приборов (РЗПП), главный конструктор — Ю. В. Осокин. ГИС производилась до середины 1990-х годов, то есть более 30 лет.
Первая зарубежная ГИС была анонсирована фирмой IBM в 1964 году в виде STL-модулей, которые были созданы фирмой для нового семейства компьютеров IBM-360.
Следующая гибридная толстоплёночная интегральная микросхема (серия 201 «Тропа») была разработана в 1963-65 годах в НИИ точной технологии («Ангстрем»), серийное производство с 1965 года].
Разработки и исследования в области специальной микроэлектроники велись ЛНПО «Авангард». Результатом работы было создание новых видов комплектующих изделий РЭА — микросборок и устройств функциональной электроники.
Гибридные МС являются дальнейшим развитием идеи микромодулей — компактных законченных функциональных блоков, собранных на миниатюрных бескорпусных элементах очень плотным монтажом. Микромодули же, в свою очередь, продолжают идеи компактронов — комбинированных радиоламп, содержащих в одном баллоне 3 и более лампы. Ещё до Второй Мировой войны существовали компактроны, в которых сразу были выполнены межэлектродные соединения ламп в нужную схему, а также имелись проволочные резисторы и дроссели, это и были первые микромодули и непосредственные предки гибридных МС.
Гибридная интегральная схема (гибридная микросхема, микросборка, ГИС, ГИМС) — интегральная схема, в которой наряду с элементами, неразъёмно связанными на поверхности или в объёме подложки, используются навесные микроминиатюрные элементы (транзисторы, конденсаторы, полупроводниковые диоды, катушки индуктивности, вакуумные электронные приборы, кварцевые резонаторы и др.). В зависимости от метода изготовления неразъёмно связанных элементов различают гибридные, плёночную и полупроводниковую интегральные схемы.
Резисторы, контактные площадки и электрические проводники в ГИС изготовляют либо последовательным напылением на подложку различных материалов в вакуумных установках[1] (метод напыления через маски, метод фотолитографии — ГИС тонкоплёночной технологии), либо нанесением их в виде плёнок (химические способы, метод шёлкографии и др. — ГИС толстоплёночной технологии).
Величины плёночных резисторов могут быть скорректированы в процессе производства с помощью лазерной подгонки (лазерное воздействие локально испаряет материал резистора, уменьшая его сечение), что необходимо, например, для создания высокоточных ЦАП и АЦП.
Навесные элементы крепят на одной подложке с плёночными элементами, а их выводы присоединяют к соответствующим контактным площадкам пайкой или сваркой. ГИС, как правило, помещают в корпус и герметизируют. Применение ГИС в электронной аппаратуре повышает её надёжность, уменьшает габариты и массу.
В моем распоряжении ГИС К816УД2в. Операционный усилитель К816УД2 подобен К816УД1, с небольшим отличием — входной каскад УД1 выполнен на составных n-p-n транзисторах, а входной каскад УД2 выполнен с применением полевых n-канальных транзисторов с p-n-переходом.
В фильме показаны методы газопламенного, электродугового, плазменного, детанационного напыления, способные улучшить качество поверхностей.
Леннаучфильм, 1984 год.